
Using and Abusing TclLib

Gerald W. Lester
HMS Software, Inc.

Overview

● What is TclLib
● Tour of Modules
● Some Short Examples

– Parallel Difference Utility
– Sending E-mail with Attachments
– FTP Mirror

● How you can help

What is TclLib

● Collection of “pure” Tcl modules
– Several use C extensions if available

● Provides the same functionality
● Provides performance improvement
● One interface for programmer

● “Certified” modules
– Test cases
– Documentation

● Open Source
– http://tcllib.sf.net

● All code under BSD license
– Same as Tcl/Tk
– Can be used in commercial applications

Overview of Modules

● Programming Tools
● Mathematics
● Data Structures
● Networking
● CGI Programming
● Hashes, Checksums

and Encryption

● Text Processing
● Documentation

Tools
● File Format
● Grammars and

Finite Automata

Programming Tools

● Two Object Systems
– SNIT
– STOOP

● Logging utilities (log and logger)
● Tcl Source Code Profiler
● Persistence array (tie)
● One-to-many communication with sockets
● Control flow constructs
● File Utilities

Snit vs Stoop

● Snit
– Based on

● Components
● Delegation
● Not inheritance

– Primary purpose is
to be object glue

● To compose diverse
objects from diverse
sources into types
and megawidgets

– Efficient as hand
coded Tcl objects

● Stoop
– More C++ or [Incr

Tcl] like
– A major design

consideration was to
have minimum
adverse impact on
performance

Mathematics

● High Precision Constants
– Pi, e, etc

● Fuzzy comparison of floats
● Complex Numbers
● Interpolation
● Integration
● Polynomial math and evaluation

Data Structures

● Create and
maipulate
– Lists
– Sets
– Stacks
– Queues
– Priority Queues
– Trees

● Create and
maipulate
– Graphs
– Records
– Matrix
– Reports on Matrix
– Pools
– Skip List

● An alternative to
binary trees

Networking

● Client only
– DNS
– LDAP
– NTP (time)
– NNTP (news)
– IRC
– IDENT (RFC 1413)

● Client and Server
– FTP
– POP3 (receive mail)

● Includes simple user
DB and mailbox
server impelentation

– SMTP (sending mail)
● Uses MIME

Networking

● Utitlites
– Ipv4 and IPv6
– URI
– Autoproxy

● Encoder/Decoders
– BitTorrent Serialization Format
– ANS.1 BER

CGI Programming

● Generation of Pages
– HTML
– JavaScript

● Reading of Forms
– ncgi

● Not to be confused with Don Libes CGI package

Text Processing and File
Formats

● Encoding/Decoding
– Base64, uuencode, Yencode

● File Formats
– CSV, Windows INI, JPEG, PNG, EXIF fields from

digital images
● Other Formats

– HTML parser, MIME
● General Text Utility

– Template processing
– String vs Character “extensions” of Tcl Commands

● Split, Trim, (un)Tabification, (de)Indent

Documentation Tools

● DocTools
– Text with embedded commands

● Commands are in “[“ “]”
– Engines to generate different targets from same

source
– Table of Contents and Index support

Hashes, Checksums and
Encryption

● Check Sums
– Cksum(1), Sum(1), CRC16, CRC32

● Hashes
– SoundEx, sha1, md4, md5, RIPEMD-128,

RIPEMD-160, md5crypt
● Encryption/Decryption

– DES
● Universally Unique Identifiers

Grammars and Finite Automata

● Create, manipulate and execute Finite State
Automatons
– When executing callback gets invoked if an

error, reset or final state is entered

Example 1 – Parallel Difference

Puts out a list of lines consisting of:

n1<TAB>n2<TAB>line

where n1 is a line number in the first file, and n2 is a
line number in the second file. The line is the text of the
line. If a line appears in the first file but not the second,
n2 is omitted, and conversely, if it appears in the
second file but not the first, n1 is omitted.

Usage: file1 file2

Example 1 - Parallel Difference
package require struct
##
Open the files and read them into memory
##
foreach fn {0 1} {
 set fd [open [lindex $argv $fn] r]
 set lines($fn) [split [read $fd] \n]
 close $fd
}
set i 0; set j 0;
##
Do the real work
##
::struct::list assign \
 [::struct::list longestCommonSubsequence $lines(0) $lines(1)] \
 x1 x2

Example 1 - Parallel Difference
##
Output until one file runs out
##
foreach p $x1 q $x2 {
 ## Output lines in file 1 but not 2
 while { $i < $p } {
 set l [lindex $lines(0) $i]
 puts "[incr i]\t\t$l"
 }
 ## Output lines in file 2 but not 1
 while { $j < $q } {
 set m [lindex $lines(1) $j]
 puts "\t[incr j]\t$m"
 }
 ## Output lines in both files
 set l [lindex $lines(0) $i]
 puts "[incr i]\t[incr j]\t$l"
}

Example 1 - Parallel Difference
##
Output remaining lines in file 1
##
while { $i < [llength $lines1] } {
 set l [lindex $lines1 $i]
 puts "[incr i]\t\t$l"
}
##
Output remaining lines in file 2
##
while { $j < [llength $lines2] } {
 set m [lindex $lines2 $j]
 puts "\t[incr j]\t$m"
}

Example 2 - Sending Mail

● Send mail with attachments

package require smtp
package require mime
##
Contents are hard coded – modify as you like
##
set server stmp.nowhere.com
set toList {p.krum@redneck.edu l.eshkin@papermill.edu}
set fromList {i.asimov@nyu.edu}
set subject {Purity of Thiotimoline Sample}
set body {blah blah blah}
set attList {chart1.pdf chart2.pdf}
array set attTypes {
 .pdf {application/pdf}
}

Example 2 - Sending Mail
##
Create body
##
set partsList [::mime::initialize \
 -canonical text/plain \
 -string $body]
##
Create attachments
##
foreach attachment $attList {
 set ext [file extension $attachment]
 lappend partsList [::mime::initialize \
 -canonical $attTypes($ext) \
 -file $ext]
}
##
Create main message
##
set messageToken [::mime::initialize \
 -canonical multipart/mixed \
 -parts $partsList]

Example 2 - Sending Mail
##
Create main message
##
set messageToken [::mime::initialize \
 -canonical multipart/mixed \
 -parts $partsList]
##
Send it
##
::smtp::sendmessage $messageToken \
 -servers $server \
 -header [list TO toList] \
 -header [list From $fromList] \
 -header [list Subject $subject]
::mime::finalize $messageToken -subordinates all

Example 3 - FTP Mirror

Mirrors a remote directory tree locally
package require ftp 2.0
##
Configuration is hard coded – put your own UI
##
set server noname
set username anonymous
set passwd xxxxxx
set dirFmt "%s %s %s %s %s %s %s %s %s %s %s"
##
Simple progress display, put a “.” out every time a
block of data is transferred
##
proc ProgressBar {bytes} {
 puts -nonewline stdout "."; flush stdout
}

Example 3 - FTP Mirror
##
Recursive file transfer
##
proc GetTree {conn {dir ""}} {
 catch {file mkdir $dir}
 foreach line [ftp::List $conn $dir] {
 set rc [scan $line $::dirFmt \
 perm l u g size d1 d2 d3 name link lnksrc]
 if {[string equal $name "."] ||
 [string equal $name ".."]} {
 continue
 }
 set type [string range $perm 0 0]
 set name [file join $dir $name]
 switch -- $type {
 d {GetTree $name}
 l {catch {file link -symbolic $lnksrc $name}}
 - {ftp::Get $conn $name}
 }
 }
}

Example 3 - FTP Mirror
##
Main
##
##
Open the connection
##
set conn [ftp::Open $server $username $passwd \
 -progress ProgressBar]
##
If we made the connection, then do the work!
##
if {$conn != -1} {
 GetTree $conn
 ftp::Close $conn
 puts "OK!"
}

How Can I Help?

● Contribute
– Code

● For anything you think is missing
● For missing protocols such as IMAP

– Better documentation
– More examples

● Help maintain a module
● File a bug report if you find something wrong
● Tell others about TclLib

Summary

● Be Lazy
– Use TclLib
– Don't reinvent the wheel

● Lots of functionality with very little code
● Pure Tcl Modules

– But takes advantage of C extension if present
● Good, Clean, Safe Code
● Tcl License

– Can be used in commercial applications

Questions?

